Dinuclear alkynyllanthanoid(II) dications with pentaphenylcyclopentadienyl or tri-*tert*-butyldiphosphacyclopentadienyl counter ions†

Craig M. Forsyth,^{*a*} Glen B. Deacon,^{*a*} Leslie D. Field,^{*b*} Cameron Jones,^{*c*} Peter C. Junk,^{*a*} Danielle L. Kay,^{*ab*} Anthony F. Masters^{*b*} and Anne F. Richards^{*ac*}

Received (in Cambridge, UK) 11th October 2005, Accepted 3rd January 2006 First published as an Advance Article on the web 23rd January 2006 DOI: 10.1039/b514358f

Reaction of $[Yb(CpPh_5)(C=CPh)(thf)]_2$ (CpPh₅ = pentaphenylcyclopentadienyl), prepared from Yb(C=CPh)₂ and HCpPh₅ or Yb metal, HgPh(C=CPh) and HCpPh₅, with a controlled amount of diglyme (dig), and of Eu(C=CPh)₂, P=CBu^t and dig, yield the unusual organolanthanoid(II) dicationic complexes $[Yb(C=CPh)(dig)(thf)_2]_2[CpPh_5]_2$ ·4thf and $[Eu(C=CPh)(dig)_2]_2$ f[P₂C₃Bu^t₃]₂ respectively.

The emerging interest in the synthesis of organolanthanoid(III) cations,¹ fueled by the high reactivity of cationic group 4 metal d⁰ complexes (*e.g* ML₂R⁺),² has not been duplicated for analogous lanthanoid(II) species Ln^{II}R(S)⁺.³ These are mainly restricted to derivatives with a cyclopentadienyl ligand as the residual Ln–C moiety.^{3*a,b*} The isolation of LnR(S)⁺ species present particular difficulties due to the lack of a stabilizing anionic co-ligand and the propensity for ligand redistribution reactions leading to solvated Ln(S)_n^{2+.4} We now report the preparation of dinuclear alkynyllanthanoid(II) cations [Ln(CCPh)(S)]₂²⁺ which are unique in having an alkynyl moiety as the σ -bound organic ligand. Our study also provides the first structurally characterised lanthanoid complexes of the very bulky CpPh₅ ligand.

Structural elucidation of the complex $[Eu(\mu-C=CPh)-(dig)_2]_2[P_2C_3Bu_3^t]_2 \cdot C_6H_6 \cdot (dig)_{0.5}$ (1) (dig = diglyme), obtained as a few single crystals by addition of dig to the product mixture from the reaction of the phosphaalkyne $P=CBu^t$ with a thf solution of $Eu(C=CPh)_2$ at -30 °C,‡ provided the first evidence of $[Ln^{II}(C=CR)(S)_n]_2^{2+}$ species. The structure of 1§ (Fig. 1) shows a dinuclear dication with two $Eu(dig)_2$ units bridged by two $PhC=C^-$ ligands *via* the α -C atoms. The two diglyme ligands wrap around the naked face of the europium centres in a helical fashion. Each Eu is eight coordinate (bicapped trigonal prism), one higher than in the alkynyl bridged $[EuCp^*(\mu-C=CPh)(thf)_2]_2^5$ which has marginally shorter Eu–C bonds, <Eu-C> (C=CPh) 2.705(7) Å, and Eu–O bonds, <Eu-O> 2.62(1) Å. All the Eu–C distances in 1 are similar, but the $Eu_2(\mu-C=CPh)_2$ bonding is unsymmetrical, with one larger and one smaller Eu–C–C angle for

Fig. 1 Molecular structure of the dication of 1 shown with 50% thermal ellipsoids and a stick representation of the two $P_2C_3Bu_3^t$ anions. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): Eu(1)–C(31) 2.72(1), Eu(1)–C(39) 2.74(1), Eu(2)–C(31) 2.77(1), Eu(2)–C(39) 2.73(1), Eu–O 2.664(6)–2.699(6), P–C 1.70(2)–1.79(1); Eu–C(31)–C(32) 147.0(8), 118.0(8), Eu–C(39)–C(40) 149.7(8), 113.9(8).

each alkynyl (Fig. 1). The $P_2C_3Bu_3^t$ anions lie in the crystal lattice and do not interact with the metal centres, the first structurally characterised example of an unbound P2C3R3⁻ moiety. Despite wide-ranging reactivity with many organometallic species,⁶ P=CBu^t has been little studied with highly reactive organolanthanoids.7 However, cyclisation of P=CBut under metal vapour synthesis conditions has yielded the complexes $[Ln(\eta^5-P_2C_3Bu_3^t)_2]$ (Ln = Sc, Yb)^{7b,c} and metal induced oligometisation of the phosphaalkyne giving a mixture of $[P_2C_3Bu_3^t]^-$ and $[P_3C_2Bu_2^t]^-$ is known.⁸ Since the Eu^{II} oxidation state is maintained in forming 1, and one alkynyl group/Eu is lost, the present oligomerisation may be accompanied by oxidative dimerisation to $(PhC \equiv C)_2$ (cf. oxidative dimerisation of $P = CBu^{t}$,^{7a} with only $[P_2C_3Bu^{t}_3]^{-}$ being isolated in 1. Although no organometallic species was isolated from the reaction of P=CBut with Yb(C=CPh)₂, crystals of the known cage $P_5C_5(Bu^t)_5$ eventually deposited, evincing the initial presence of $[P_2C_3Bu_3^t]^-$ and $[P_3C_2Bu_2^t]^-$ in the product mixture.⁹

Given the complex, low-yielding nature of the phosphaalkyne system we investigated the use of the very bulky pentaphenylcy-clopentadienyl (CpPh₅) for a deliberate synthesis of $[Ln_2(\mu-C=CPh)_2(S)_x]^{2+}$ dications (Scheme 1). The supracyclopentadienyl^{10a} CpPh₅ ligand has been only sporadically used for

^aSchool of Chemistry, Monash University, Clayton 3800, Australia. E-mail: glen.deacon@sci.monash.edu.au; Fax: +613 9905 4597; Tel: +613 9905 4568

^bSchool of Chemistry, University of Sydney, Sydney 2006, Australia. Fax: +612 9531 3329; Tel: +612 9531 3743

^cSchool of Chemistry, Cardiff University, Cardiff, UK CF10 3AT. Fax: +4429 20874030; Tel: +4429 2087 4060

[†] Electronic supplementary information (ESI) available: Additional experimental details and characterisation of new complexes. See DOI: 10.1039/b514358f

Scheme 1

f"-organometallics and without structural validation.¹⁰ Reaction of HCpPh₅ with a thf solution of Yb(C=CPh)₂, or reaction of Yb metal, HgPh(C=CPh) (generating YbPh(C=CPh) *in situ*), and HCpPh₅ in thf gave red $[Yb(CpPh_5)(\mu-C=CPh)(thf)]_2$ (2) (Scheme 1).[‡]

Complex **2** is dimeric as established by X-ray crystallography§ (Fig. 2) and the IR spectrum showed a weak v(C=C) absorption at 2033 cm⁻¹. Each Yb is six-coordinate, being bound to two bridging PhC=C ligands, an η^5 -CpPh₅ ligand and one coordinated thf. In contrast, seven-coordinate [EuCp*(μ -C=CPh)(thf)₂]₂ has an additional coordinated thf per metal.⁵ The Yb–C(C=CPh) distances are comparable to those of seven-coordinate [YbI(μ -C=CPh)(dme)]₂ (Yb–C 2.584(7), 2.602(8) Å)¹¹ after allowance for differences due to coordination number.¹² The structure of **2** also features long Yb–C(CpPh₅) distances (<Yb–C> 2.726 Å *cf.* 2.652 Å for six-coordinate [YbCp*{Si(SiMe₃)₃}(thf)₂]¹³) reflecting ligand bulk, and a highly distorted pseudo-tetrahedral Yb geometry (cent–Yb–X 118.1–124.6°, cent = centroid of CpPh₅, X = O or C, *cf.* X–Yb–X 89.2(2)–97.4(2)°).

Once isolated, 2 could not be redissolved in thf, but dropwise addition of other neutral donors such as dme (1,2-dimethoxyethane) or dig to the thf suspension gave clear red to yellow solutions. In contrast, attempted dissolution of 2 in the above pure solvents caused rapid precipitation of yellow solids. On a preparative scale, careful addition of dig to 2 in thf gave a red solution which ultimately yielded large red crystals of $[Yb(\mu-C=CPh)(dig)(thf)_2]_2[CpPh_5]_2\cdot4thf$ (3) (Scheme 1) along with a minor amount of smaller green-yellow crystals of the ion pair [Yb(dig)₃][CpPh₅]₂ (4).[‡] Treatment of 3 with excess dig in thf also gave 4 as a green-yellow precipitate (Scheme 1). Thus the use of near stoichiometric amounts of diglyme is critical to the isolation of 3 (and presumably also 1). NMR characterisation of 3 in D₈-thf was consistent with the composition established by X-ray crystallography (see below) and the $v(C \equiv C)$ absorption was observed by Raman spectroscopy. A ¹⁷¹Yb NMR signal was not observed for 3 whereas 4 has a sharp peak at 241 ppm, consistent with that observed for the $[Yb(thf)_6]^{2+}$ dication (256 ppm).¹⁴ The structure of 4 is predicted to be a solvent separated ion pair based on the known [Yb(dig)₃]²⁺ dication.¹⁵

The structure of the dication of 3§ (Fig. 3) is similar to that of 1, having a $Ln_2(\mu-C=CPh)_2$ core, but in 3 the co-ligands are one diglyme and two thf ligands giving a coordination number of seven, one less than for the larger¹² Eu²⁺ in 1. The geometry at Yb can be described as distorted pentagonal bipyramidal (in Fig. 3, O(4) and C(1)[#] are axial, O-Yb-C 170.46(9)°). The unit cell contains two independent, but centrosymmetric, dications differing only in the bridging phenylacetylide arrangement. One dication has near equivalent Yb-C distances and Yb-C-C angles whereas the other (Fig. 3) is considerably distorted. The Yb-C distances (Fig. 3) for the more symmetrical phenylacetylide bridge are very close to those of seven-coordinate [YbI(μ -C=CPh)(dme)]₂.¹¹ However, for the unsymmetrical bridge one Yb-C bond is longer (Yb(1)[#]-C(1) 2.662(3) Å) and also there is a close approach of the PhC=C β -carbon to the associated Yb atom (Yb(1)-C(2)

Fig. 2 The molecular structure of centrosymmetric **2** shown with 50% thermal ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): Yb–C(CpPh₅) 2.713(6)–2.740(6), Yb(1)–C(100) 2.522(6), Yb(1)–C(100)^A 2.542(6), Yb–O(1) 2.371(5); Yb–C–C 129.5(5), 139.7(5). ^A denotes atoms at (2 - x, 2 - y, 1 - z).

Fig. 3 Structure of one of the centrosymmetric dication units of 3 shown with 50% thermal ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°) [values in parentheses refer to the second independent dication]: Yb(1)–C(1) 2.662(3), Yb(1)–C(1)[#] 2.586(3) [Yb(2)–C(58) 2.587(3), Yb(2)–C(58)* 2.600(3)], Yb–O 2.463(2)–2.579(2) [2.447(3)–2.530(2)]; Yb–C–C 163.4(3), 102.3(3) [132.2(3), 135.5(3)]. [#]Atoms at (1 - x, -y, 1 - z); *Atoms at (-x, 1 - y, -z).

3.130(4) Å). The CpPh₅⁻ anions in **3** are not bound to the metal but reside in the crystal lattice. Each dication is surrounded on four sides by the face of a CpPh₅⁻ anion generating a honeycomb network of anions with chains of cations located within the channels. A similar pattern is also observed in **1** but is less regular. An analogous 3-D arrangement of cations and anions has been described for Group 2 complexes with elongated dinuclear dications *e.g.* $[CaBr(thf)_4]_2^{2+}$ or $[MgMe(pmdta)]_2^{2+}$.¹⁶

The complexes **1** and **3** represent a new class of organolanthanoid(II) cations and their stability appears dependent upon the choice of co-ligands and counter ions, and they provide support for the proposal that $[Ln^{III}(L)(C=CR)(S)]_2^{2+}$ moieties are present in organolanthanoid(III) catalysed *cis*-selective linear dimerisation of alkynes.¹⁷

We acknowledge support from the Australian Research Council and the EPSRC.

Notes and references

‡ Syntheses: 1: Dropwise addition of P=CBut (600 μL, 3.7 mmol) to a solution of Eu(C=CPh)₂ (3.0 mmol) in thf (10 mL) at -30 °C and warming to room temperature followed by concentration, addition of PhMe and diglyme and cooling to -30 °C gave an inhomogeneous mixture (0.17 g) containing a few yellow crystals. Mp 145–148 °C. IR (Nujol/cm⁻¹): 1654m, 1508m, 1378m, 1261m, 1090m, 856w, 801w, 696w, 674w. MS (ES+, m/z) 253 (85%, $Eu_2(C\equiv CPh)_2^{2^+}$), 864 (90, $Eu_2C_2(dig)_4^+$). 2: (a) $Yb(C\equiv CPh)_2$ (2.0 mmol) in thf (40 ml) was stirred with HCpPh₅ (0.88 g, 2.0 mmol) at room temperature for 24 h, then at 50 °C for 2 h. Filtration and concentration of the filtrate gave a red solid which was washed with warm thf (60 ml) and dried under vacuum giving crystalline red 2 (0.48 g, 30%). (b) Excess Yb metal (1.04 g, 6.0 mmol), HgPh(C≡CPh) (0.76 g, 2.0 mmol) and HCpPh5 (0.88 g, 2.0 mmol) in thf (50 mL) were stirred at room temperature for 24 h. Filtration and concentration of the filtrate gave 2 as a red crystalline solid (1.12 g, 70%). Anal. Found for C₉₄H₇₆O₂Yb₂: C 69.9, H 5.2, Yb 22.5. Calc. C 71.2, H 4.8, Yb 22.0%. IR (Nujol/cm⁻¹): 2033w (v(C≡C)), 1594m, 1500s, 1178w, 1142w, 1073m, 1022m, 911m, 866m, 802w, 778m, 758m, 739m, 702s. 3: Dropwise addition of diglyme (0.1 mL 0.7 mmol) to a suspension of 2 (0.39 g, 0.25 mmol) in thf (40 mL) followed by filtration, concentration of the filtrate and standing gave large red blocks of 3 mixed with a few smaller green-yellow crystals of 4. The red crystals were separated by hand (0.46 g, 80%). Anal. Found for $C_{130}H_{152}O_{14}Yb_2$: C 66.9, H 6.3, Yb 15.8. Calc. C 68.3, H 6.7, Yb 15.2%. IR (Nujol/cm⁻¹): (Raman, 2034w, v(C≡C)), 1588s, 1498s, 1282w, 1246w, 1173w, 1141m, 1072m, 1050m, 1026m, 909m, 868m, 802m, 776m, 759w, 738m, 701s. ¹H NMR (400 MHz, 293 K, D₈-thf) δ/ppm: 6.70-6.60, br m, 60H, Ph; 3.62, m, 32H, thf; 3.48, s, 12H, CH_3O ; 3.30, s, 16H, CH_2O ; 1.77, m, 32H, thf. ¹³C NMR (100.6 MHz, 293 K, D₈-thf) δ/ppm: 26.4, 68.3, 71.1, 72.9, 121.3, 121.8, 123.6, 124.9, 126.9, 127.9, 132.7, 132.9, 138.6, 144.1, 4: Excess diglyme (0.5 ml, 3.5 mmol) was added to 3 (0.18 g, 0.08 mmol) in thf (5 ml) giving a green-yellow precipitate of 4 (0.09 g, 80%). Anal. Found for C88H92O9Yb: C 72.9, H 5.8, Yb 11.6. Calc. C 72.1, H 6.3, Yb 11.8%. IR (Nujol/cm⁻¹): 1589s, 1498s, 1278w, 1249w, 1172w, 1142m, 1090m, 1045m, 996w, 945w, 910w, 868m, 802m, 776m, 739m, 710s, 701s. ¹H NMR (400 MHz, 293 K, D₈-thf) δ /ppm: 6.77–6.69, br m, 50H, Ph; 3.46, s, 18H, CH₃O; 3.28, s, 24H, CH₂O. ¹³C NMR (100.6 MHz, 293 K, D₈-thf) δ /ppm: 71.1, 72.9, 121.3, 121.8, 127.0, 132.8, 143.9. 171 Yb NMR (52.5 MHz, 293 K, thf) δ /ppm: 241, $\Delta v_{\frac{1}{2}} = 20$ Hz.

§ *Crystal data:* 1: C₇₉H₁₃₃Eu₂O_{113.5}P₄, M = 1726.65, triclinic, $P\overline{1}$ (no. 2), a = 14.945(3), b = 16.865(3), c = 18.374(4) Å, $\alpha = 72.77(3)$, $\beta = 88.65(3)$, $\gamma = 18.374(4)$ Å, $\alpha = 72.77(3)$, $\beta = 88.65(3)$, $\gamma = 18.374(4)$

79.01(3)°, V = 4340(2) Å³, Z = 2, $D_c = 1.321$ g cm⁻³, $\mu = 1.561$ mm⁻¹, 15127 unique data ($R_{int} = 0.085$) converged to R1 = 0.101, $wR_2 = 0.150$ (R1 = 0.170, $wR_2 = 0.171$ all data). **2**: C₉₄H₇₆O₂Yb₂, M = 1583.72, triclinic, PĪ (no. 2), a = 12.4427(2), b = 13.1004(1), c = 13.3179(2) Å, $\alpha = 116.42(1)$, $\beta = 99.74(1)$, $\gamma = 102.07(1)^\circ$, V = 1814.0(6) Å³, Z = 1, $D_c = 1.450$ g cm⁻³, $\mu = 2.613$ mm⁻¹, 8749 unique data ($R_{int} = 0.084$) converged to R1 = 0.055, $wR_2 = 0.123$ (R1 = 0.082, $wR_2 = 0.132$ all data). **3**: C₁₃₀H₁₅₂O₁₄Yb₂ M = 2284.60, monoclinic, P_{21}/c (no. 14), a = 25.9306(2), b = 22.2060(2), c = 20.6683(1) Å, $\beta = 111.4124(3)^\circ$, V = 11080(4) Å³, Z = 4, $D_c = 1.370$ g cm⁻³, $\mu = 1.74$ mm⁻¹, 27101 unique data ($R_{int} = 0.072$) converged to R1 = 0.041, $wR_2 = 0.083$ (R1 = 0.075, $wR_2 = 0.095$ all data). CCDC 286665–286667. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b514358f

- Recent examples: (a) S. Arndt and J. Okuda, Adv. Synth. Catal., 2005, 347, 339; (b) C. S. Tredget, F. Bonnet, A. R. Cowley and P. Mountford, Chem. Commun., 2005, 3301; (c) S. Bambirra, D. van Leusen, A. Meetsma, B. Hessen and J. H. Teuben, Chem. Commun., 2003, 522; (d) P. G. Hayes, W. E. Piers and R. MacDonald, J. Am. Chem. Soc., 2002, 124, 2132.
- 2 E. Y.-X. Chen and T. J. Marks, *Chem. Rev.*, 2000, 100, 1391, and references therein.
- 3 Y. K. Gun'ko, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 1998, 1843; H. Nakamura, Y. Nakayama, H. Yasuda, T. Maruo, N. Kanehisa and Y. Kai, *Organometallics*, 2000, **19**, 5392; G. B. Deacon, C. M. Forsyth and P. C. Junk, *Chem.–Eur. J.*, 2004, **10**, 1798.
- 4 W. J. Evans, M. A. Johnston, M. A. Greci, T. S. Gummersheimer and J. W. Ziller, *Polyhedron*, 2003, 22, 119.
- 5 J. M. Boncella, T. D. Tilley and R. A. Andersen, J. Chem. Soc., Chem. Commun., 1984, 710.
- 6 (a) K. B. Dillon, F. Mathey and J. F. Nixon, *Phosphorus: The Carbon Copy*, Wiley, Chichester, 1998; (b) J. F. Nixon, *Coord. Chem. Rev.*, 1995, 145, 201.
- 7 (a) A. Recknagel, D. Stalke, H. W. Roesky and F. T. Edelmann, Angew. Chem., Int. Ed. Engl., 1989, 28, 445; (b) P. Arnold, F. G. N. Cloke and J. F. Nixon, Chem. Commun., 1998, 797; (c) A. G. Avent, F. G. N. Cloke, K. R. Flower and J. F. Nixon, unpublished results, 1994 (reported in ref. 6b).
- 8 (a) A. H. Cowley and S. W. Hall, *Polyhedron*, 1989, 8, 849; (b)
 R. Bartsch and J. F. Nixon, *Polyhedron*, 1989, 8, 2407.
- 9 R. Bartsch, P. B. Hitchcock and J. F. Nixon, J. Organomet. Chem., 1989, 375, C31.
- (a) C. Janiak and H. Schumann, Adv. Organomet. Chem., 1991, 33, 291;
 (b) H. Schumann, J. Winterfeld, M. Glanz, R. D. Kohn and H. Hemling, J. Organomet. Chem., 1994, 481, 275; (c) R. Zhang and M. Tsutsui, Youji Huaxue, 1982, 435, Chem. Abstr., 1982, 98, 198374; (d) complexes of the less bulky CpPh₄ ligand have been isolated: M. G. Klimpel, H. W. Gorlitzer, M. Tafipolsky, M. Spiegler, W. Scherer and R. Anwander, J. Organomet. Chem., 2002, 647, 236.
- 11 E. A. Fedorova, N. V. Glushkova, M. N. Bochkarev, H. Schumann and H. Hemling, *Russ. Chem. Bull.*, 1996, **45**, 1996.
- 12 R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751.
- 13 M. M. Corradi, A. D. Frankland, P. B. Hitchcock, M. F. Lappert and G. A. Lawless, *Chem. Commun.*, 1996, 2323.
- 14 U. Reissmann, L. Laymeyer, D. Stalke, P. Poremba and F. T. Edelmann, *Chem. Commun.*, 1999, 1865.
- 15 J. P. White, III, H. Deng, E. P. Boyd, J. Gallucci and S. G. Shore, *Inorg. Chem.*, 1994, 33, 1685.
- 16 (a) S. Harder, Angew. Chem., Int. Ed., 2004, 43, 2714; (b) S. Harder, F. Feil and T. Repo, Chem.–Eur. J., 2002, 8, 1991.
- 17 C. G. J. Tazelaar, S. Bambirra, D. van Leusen, A. Meetsma, B. Hessen and J. H. Teuben, *Organometallics*, 2004, 23, 936.